

TECHNICAL PACKAGE FOR BEDAQUILINE (BDQ) (MBR-M4ALL-BDQ-1)

Prepared By	Checked By	Reviewed By
Appana Ramakrishna	Sujoy Karmakar	Angshuman Ghosh
Designation: Research Scientist	Designation: Lead Scientist	Designation: Group Lead

Page **1** of **24**

Contents	
INTRODUCTION	3
OBJETIVE AND SCOPE	3
SYNTHESIS OF BEDAQUILINE	4
SYNTHETIC APPROACH BDQ LIST OF RAW MATERIALS USED FOR THE SYNTHESIS OF CRUDE BDQ LIST OF RAW MATERIAL AND CERTIFICATE OF ANALYSIS (COA) CRITICAL MATERIAL ATTRIBUTES GENERAL PROCEDURE FOR <i>N</i> -BULI TITRATION ABBREVIATION LIST	4 4 6 6
EQUIPMENT LIST	8
PROCEDURE FOR DRYING REAGENTS AND PREPARING SOLUTIONS	8
PROCEDURE FOR CLEANING AND DRYING GLASSWARE	8
 i. Procedure-A (Drying of LiBr) [RBF-1] ii. Procedure-B (KSM-II Free Amine Synthesis) [RBF-8] iii. Procedure-C (Drying of <i>R</i>-Chiral amine with activated molecular sieves) [RBF-2] iv. Procedure-D (Drying of KSM-I) [RBF-3] v. Procedure-E (Drying of KSM-II-Free amine with activated molecular sieves) [RBF-4] vi. Procedure-F (Solution of KSM-II Free amine) [RBF-5] 	11 14 15 17
LIST OF RAW MATERIALS AFTER DRYING	20
BEDAQUILINE ASSEMBLY REACTION	21
Synthesis of Bedaquiline from KSM-I & KSM-II-Free amine – [RBF-6]	21
IPC METHOD FOR PURITY FOR PURITY ANALYSIS OF CRUDE BDQ	23
IN-PROCESS CONTROL DATA	

Page **2** of **24**

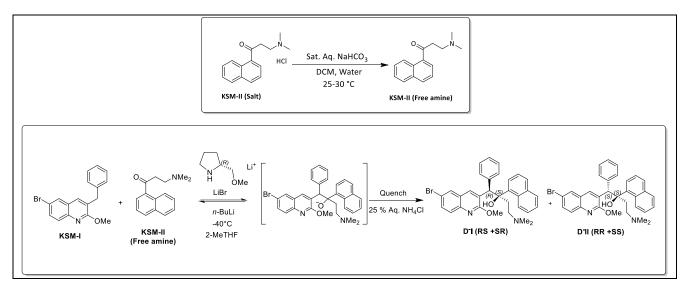
INTRODUCTION

Bedaquiline, a diarylquinoline (DARQs), inhibits mycobacterial adenosine triphosphate (ATP) synthase and is licensed for use in the treatment of drug-resistant tuberculosis.

The description of Bedaquiline is shown below:

Project Code	CR592
MBR Number:	MBR-M4ALL-BDQ-1
Product Name:	Bedaquiline
IUPAC Name	(1 <i>R</i> ,2 <i>S</i>)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2- (naphthalen-1-yl)-1-phenylbutan-2-ol
CAS Number	843663-66-1
Chemical Formula	$C_{32}H_{31}BrN_2O_2$
Molecular Weight	555.52
Structure	Br (R) (R) (R) (R) (R) (R) (R) (R)
Physical Appearance	Crystalline white powder
Melting Point	118 °C
Solubility	Acetone, Tetrahydrofuran
Insoluble	Water
Stereoisomers	 i) (1<i>S</i>,2<i>R</i>)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2- (naphthalen-1-yl)-1-phenylbutan-2-ol ii) (1<i>R</i>,2<i>R</i>)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2- (naphthalen-1-yl)-1-phenylbutan-2-ol iii) (1<i>S</i>,2<i>S</i>)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2- (naphthalen-1-yl)-1-phenylbutan-2-ol
Polymorphic Details	Not available

OBJETIVE AND SCOPE


The objective of this development report is to create complete scientific information to support the process development of (1R,2S)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2-(naphthalen-1-yl)-1-phenylbutan-2-ol (BDQ). This batch process record (BPR) document covers the first step in the process to make pure bedaquiline, namely the lithiation and 1,2-addition reaction, including the quench and isolation of the crude isomer mixture. The chiral resolution and subsequent purification steps will be handled in separate BPR documents.

Page 3 of 24

SYNTHESIS OF BEDAQUILINE

Synthetic Approach BDQ

List of Raw materials used for the synthesis of crude BDQ

Stage-1:

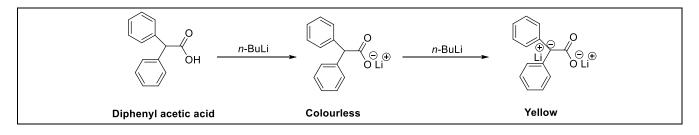
- i. KSM-I
- ii. KSM-II ("HCl Salt")
- iii. LiBr (Anhydrous)
- iv. (R)-2-(Methoxymethyl)pyrrolidine ("R-Chiral amine", Anhydrous)
- v. *n*-Butyllithium 2.5 M in hexane
- vi. Ammonium chloride (NH₄Cl)
- vii. Anhydrous Magnesium sulfate (MgSO₄)
- viii. Sodium bicarbonate (NaHCO₃)
- ix. 2-Methyltetrahydrofuran (2-MeTHF, Anhydrous)
- x. Dichloromethane (DCM)
- xi. Process water (Tap)
- xii. Sodium chloride

List of Raw Material and Certificate of Analysis (COA)

S. No.	Raw Material Name	Source	СОА	Remarks
1.	KSM-I	Yibin Hongguang Pharma	KSM-I	

Page 4 of 24

2.	KSM-II (Salt)	Yibin Hongguang Pharma	PDF KSM-II	
3.	LiBr	Sigma-Aldrich	Pre LiBr	
4.	<i>R</i> -Chiral amine	Combi-Block	COA-BD2450_CGP4 65_98.78_GC.pdf	D-Prolinol (Combi- Block/BLD Pharma) for making <i>R</i> -Chiral amine
5.	<i>n</i> -Butyllithium	Clear Synth	n-Butyl Lithium 2.5M in Hexane	Molarity determination is required before use
6.	NH4Cl	Rankem	NH4CI	
7.	Anhydrous MgSO ₄	Sigma-Aldrich		
8.	Diphenyl acetic acid	Sigma-Aldrich		For tritration of <i>n</i> -Butyllithium
9.	NaHCO ₃	Rankem	NAHCO3	
10.	DCM	Standard Reagent	DCM	
11.	2-MeTHF	Sigma-Aldrich	2-Me-THF	Batch No.: SHBN7180
12.	Sodium chloride (NaCl)	Rankem		
13.	Sodium sulfate (Na ₂ SO ₄) (Anhydrous)	Finar Chemical		
14.	Raw Water			


Page **5** of **24**

Critical Material Attributes

S. No.	Reagents & Raw materials	Parameter Specification NMT KF (w/w %)	Purity Specification	Result
1.	KSM-I	<0.10	HPLC > 98 % (A %)	KF = 0.06 % HPLC = 99.81 (A %)
2.	KSM-II	<0.10	HPLC > 90 % (A %)	KF = 0.08 % HPLC = 95 % (A %)
3.	(<i>R</i>)-2-(Methoxymethyl)pyrrolidine	<0.10	GCHS > 98 % SOR \leq -8.5° Concentration=1 g/100 cm ³ Solvent = Chloroform	GCHS = 99.03 % $SOR = -9.637^{\circ}$ Concentration = 1 $g/100 \text{ cm}^{3}$ Solvent = Chloroform KF = 0.07 %
4.	LiBr	<0.10		KF = 0.05 %
5.	2-MeTHF	<0.05		KF = 0.05 %
6.	n-BuLi		Molarity > 2.0 M	Molarity determined = 2.5 M

General Procedure for *n*-BuLi Titration

To 1.00 mmol (212 mg) diphenylacetic acid (DPPA) in 8 mL dry THF at rt is added *n*-BuLi dropwise via syringe. Upon addition of each drop, a yellow cloud is formed which quickly dissipates. Toward the end of the titration, a white precipitate began to form. At the point when the yellow color persists, the titration is determined to be finished and the amount of molarity of active *n*-BuLi in the solution is calculated from the moles of DPPA that were required to reach the endpoint.

Note: This titration must be repeated three times and the average used to calculate the molarity of the reagent used in the process.

See reference: A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281-283.

Page 6 of 24

ABBREVIATION LIST

S. No.	Abbreviation	Full Form		
1.	BDQ	Bedaquiline		
2.	DCM	Dichloromethane		
3.	HDPE	High Density Polyethylene		
4.	<i>R</i> -Chiral amine	(<i>R</i>)-2-(Methoxymethyl)pyrrolidine		
5.	MOC	Material of construction		
6.	NMT	Not More Than		
7.	2-MeTHF	2-Methyltetrahydrofuran		
8.	MC	Moisture Content		
9.	KF	Karl Fischer titration		
10.	KSM-I	3-benzyl-6-bromo-2-methoxyquinoline		
11.	KSM-II	3-(dimethylamino)-1-(naphthalen-1-yl) propan-1-one		
12.	RM	Reaction mixture		
13.	FLT	Filter		
14.	RBF	Round-bottom flask		
15.	Т	Number of Times		

Page **7** of **24**

EQUIPMENT LIST

S. No.	Equipment Name	Equipment ID.	MOC	Capacity	Remarks	Sign
1.	Reactor	RBF-1	All glass	1L 4-neck RBF		
2.	Reactor	RBF-2	All glass	1L 4-neck RBF		
3.	Reactor	RBF-3	All glass	1L 4-neck RBF		
4.	Reactor	RBF-4	All glass	1L 4-neck RBF		
5.	Reactor	RBF-5	All glass	1L 4-neck RBF		
6.	Reactor	RBF-6	All glass	5L 4-neck RBF		
7.	Reactor	RBF-7	All glass	5L 4-neck RBF		
8.	Reactor	RBF-8	All glass	5L 4-neck RBF		
9.	Buchner Funnel	FLT-1	Porcelain	1L 4-neck RBF		
10.	Buchner Funnel	FLT-2	Porcelain	2L 4-neck RBF		
11.	Separating funnel	Sep funnel-1	All glass	5L		
12.	Addition funnel	Addition funnel-1	All glass	2L		

PROCEDURE FOR DRYING REAGENTS AND PREPARING SOLUTIONS

- i. Procedure-A (Drying of LiBr) **RBF-1**
- ii. Procedure-B (KSM-II-Free Amine Synthesis) RBF-8
- iii. Procedure-C (Drying of *R*-Chiral amine) **RBF-2**
- iv. Procedure-D (Drying of KSM-I) RBF-3
- v. Procedure-E (Drying of KSM-II-Free amine) RBF-4
- vi. Procedure-F (Solution of KSM-II-Free amine) RBF-5

PROCEDURE FOR CLEANING AND DRYING GLASSWARE

Reactions and drying of the reaction components (LiBr, **KSM-I**, **KSM-I**, *R*-Amine) were performed in laboratory-scale using round-bottom flasks (RBF). RBF has been washed and dried as mentioned below:

Page 8 of 24

- Step 1: Water was charged into the RBF, refluxed for 30 min, cooled at 25 °C, and water disposed.
- Step 2: MeOH was charged into the RBF, refluxed for 30 min, cooled at 25 °C and solvent disposed.
- Step 3: RBF was dried with N₂ flow.

i. Procedure-A (Drying of LiBr) [RBF-1]

Process Information:

Actual batch size and quantity (Calculation on the basis of 75 g KSM-I):

S. No.	Reagent		Unit	Qty	Mol Wt.	mol	Mol Ratio / wt. times vol	Source					
1	LiBr		ъ	45.64	86.84	0.52	2.3 eq	Sigma-Aldrich					
		Lot-1		300 mL			4.0 V						
2	2-MeTHF	Lot-2	mI	300 mL								4.0 V	Sigma-Aldrich
Z	2-1411 HF	Lot-3	mL	300 mL	-	-	4.0 V						
		Lot-4		225 mL			3.0 V						

Table No. 1:

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
1.	Check the cleanliness of the reactor RBF-1 (1 L 4-neck flask) and outfit with an internal temperature probe, overhead stirrer, distillation adapter, condenser and N_2 inlet.				
2.	Charge LiBr powder under N_2 atmosphere at 25-30 °C in RBF-1 . Note: LiBr powder is extremely hygroscopic, operation was performed under N_2 atmosphere.	45.6 g	46.0 g		
3.	Charge anhydrous 2-MeTHF-Lot-1 via cannula into the RBF-1 .	300 mL	300 mL		
4.	Stir (100-120 RPM) reaction mass for 15-20 min at 25-30 ° C. Note: Solution becomes homogeneous.	IPC-1: (MC by KF)		KF = 0.72 %	

Page **9** of **24**

	1				1
		(w/w %):			
		Before			
		azeotropic			
		distillation			
	Raise the reaction's oil bath temperature to 90 ± 5 °C.			Internal	
5.				Temp = 74	
				°C	
	Distill 2-MeTHF out so that ~75 mL is left in RBF-1 .		~ 250.0		
6.			mL		
	Note: Distill 2-MeTHF out by using simple distillation.		collected		
7.	Cool the reaction mass up to 25-30 $^{\circ}$ C under N ₂				
7.	atmosphere.				
8.	Charge 2-MeTHF-Lot-2 into RBF-1 via cannula	300 mL	300 mL		
0.	applying N ₂ pressure.	500 IIIL	500 IIIL		
9.	Repeat Step-5 to 7.				
	Submit IPC-1. If not complies repeat operation from	IPC-1:		Complies	
	Step-3 to 7, and use 2-MeTHF-Lot-3 .	(MC by		KF = 0.05 %	
10.	Sampling Procedure: Take 5 mL of LiBr solution and	KF)			
		(w/w %):			
	submit for KF analysis.	NMT 0.1			
11.	Charge 2-MeTHF-Lot-4 via cannula applying N ₂	225 mL	225 mL		
11.	pressure into the RBF-1 .	225 mL	225 mL		
				LiBr in	
12.	Store LiBr solution under N_2 atmosphere in RBF-1 .			300.0 mL of	
				2-MeTHF	
· · · · · · · · · · · · · · · · · · ·					

Results:

S. No.	Batch ID	LiBr KF before drying (w/w %)	LiBr KF after dry (w/w %)	Sign
1	CR592-20218-17-LiBr	0.72	0.05	

Page **10** of **24**

Sl. No.	Step No. 4	Step No. 10
	KF of Lithium Bromide before drying	KF of Lithium Bromide after drying
1	CR592-20218-17-LiB r_before_KF.pdf	CR592-20218-17-LiB r-after_KF.pdf

ii. Procedure-B (KSM-II Free Amine Synthesis) [RBF-8]

Actual batch size and quantity (Calculation on the basis of KSM-II salt - 80 g):

S. No.	Reagent		Unit	Qty	Mol Wt.	mol	Mol Ratio / wt. times vol	Source	
1	KSM-II (Salt)		сŋ	80.0	263.7	0.303	1.00 eq	Yibin Hongguang Pharma (Purity: 98.19 A %)	
2	NaHCO ₃		50	86.6	84.0	1.03	3.4 eq	Rankem NaHCO ₃ (86.6 g) in Water (713 mL) 10 V	
3	Water	Lot-1	mL	800 mL			10.0 V	Raw water	
5	water	Lot-2	IIIL	400 mL	-	_	5.0 V	Kaw Water	
	DCM	Lot-1		800 mL			10.0 V		
4	DCM	Lot-2	mL	400 mL	-	-	5.0 V	Rankem	
		Lot-3		80 mL			1.0 V		
5	Mg_2SO_4		g	18.2	120.3	0.176	0.5 eq	Sigma-Aldrich	

Table No. 2:

Procedure for Free amine of KSM-II

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign			
	KSM-II free base from KSM-II salt							
1.	Charge KSM-II salt into a well dried and clean 5 L 3-neck RBF-8 at 25-30 °C.	80.0 g	80.0 g	Purity: 98.19 %, HPLC A %)				

Page **11** of **24**

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
2.	Charge Water-Lot-1 through graduated measuring cylinder into RBF-8 at 25-30 °C.	800.0 mL	800.0 mL		
3.	Stir the mixture (90-100 RPM) at 25-30 °C for ~10-15 min until the solid is completely dissolved.			Clear solution was observed	
4.	Charge DCM-Lot-1 through graduated measuring cylinder into RBF-8 at 25-30 °C.	800 mL	800.0 mL		
5.	Stir (90-100 RPM) the mixture at 25-30 °C for 15-20 min.				
6.	Slowly charge sat. solution of NaHCO ₃ for 45 min into RBF-8 via addition funnel-1 at 25-30 °C. Note: Liberate CO ₂ gas from mixture.	800 mL	800.0 mL	Rate of addition = 17.7 mL/min	
7.	Stir (90-100 RPM) the mixture at 25-30 °C for 8- 10 min.			Temp = 28 °C	
8.	Transfer the reaction mass to 5 L separating funnel (Sep funnel-1).				
9.	Settle the mixture for layer separation (5-10 min).				
10.	Separate the DCM layer and store it in dedicated HDPE-1 container. Aqueous layer goes to the RBF-8 .		760.0 mL	Product is present in organic layer	
11.	Charge DCM-Lot-2 through graduated cylinder into the aqueous layer.	400 mL	400.0 mL		
12.	Stir (90-100 RPM) the mixture at 25-30 °C for 5- 10 min.				
13.	Transfer the reaction mass to the same separating funnel (Sep funnel-1).				
14.	Settle the mixture for layer separation (10-15 min).				
15.	Separate the DCM layer by separatory funnel and store in dedicated HDPE-1 .		375.0 mL	Product is present in organic layer.	
16.	Discard the aqueous layer.				
17.	Charge DCM layer into 5L 3-neck RBF at 25-30 °C.			From dedicated HDPE-1	

Page **12** of **24**

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
18.	Charge Water-Lot-2 into the DCM layer.	400 mL	400 mL		
19.	Stir (100-120 RPM) the mixture at 25-30 °C for 5-10 min.				
20.	Settle the mixture for layer separation (10-15 min).				
21.	Separate the DCM layer by separatory funnel (Sep funnel-1) and store in dedicated HDPE-1.				
22.	Charged anhydrous MgSO ₄ into HDPE-1 .	18.2 g	20.0 g	DCM layer	
23.	Filter the organic layer through Buchner funnel (FLT-1).				
24.	Wash MgSO ₄ bed with DCM-Lot-3 and suck dry the solid.	80 mL	80 mL		
25.	Remove the collected solvent (DCM) under vacuum at 30-35 °C for 1-2 h.			Vacuum 740-750 mmHg	
26.	Unload pale yellow liquid (KSM-II-free amine) into RBF under N_2 and record the weight.		66.0 g		

Results:

Sl. No.	Batch ID	Batch size (g)	KSM-II salt purity (HPLC A %)	Output (g)	KSM-II Free amine purity after Workup (A %)	Molar yield (A %)	Sign
1	CR592- 19938-59- Free amine	80	98.19 %	66.0	94.85 %	95.4 %	

Sl. No.	Step No. 1	Step No. 26
	KSM-II salt purity (HPLC A %)	KSM-II free amine purity
1	CR592-20218-7-KSM -II.pdf	CR592-19938-59-Fre eamine.pdf

Page **13** of **24**

iii. Procedure-C (Drying of *R*-Chiral amine with activated molecular sieves) [RBF-2]

Actual batch size and quantity:

S. No.	Reagent	Unit	Qty	Mol Wt.	mol	Mol Ratio / wt. times vol	Source
1	<i>R</i> -Chiral amine		45.0 mL	115.1	0.388	1.7 eq	CR592-20195-34-F2
2	Molecular sieves, 4 Å	g	9.0 g	-	-	0.2 T	Avra

Table No. 3:

Process Information:

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
1.	Check the cleanliness of the reaction RBF-2 (1 L 2- neck flask) fitted with a vacuum line and N ₂ inlet.				
2.	Charge molecular sieves 4Å at 25-30 °C.	9.0 g	9.0 g		
3.	Raise temperature of RBF-2's oil bath to 140-150 °C.			Digital Thermometer was used	
4.	Apply vacuum slowly and keep the same range of temperature for 4-5 h.			740-750 mmHg	
5.	Cool the RBF-2 to 25-30 °C and keep N_2 atmosphere.				
6.	Charge (<i>R</i>)-2-(Methoxymethyl)pyrrolidine into RBF-2 . Note: Material has been transferred via cannula.	45.0 mL	45.0 mL	KF = 0.24 %	
7.	Store (<i>R</i>)-2-(Methoxymethyl)pyrrolidine for 3-4 h and submit sample for KF analysis. Sampling Procedure: Take 2 mL of <i>R</i> -Chiral amine and submit it for KF analysis.	IPC-2: (MC by KF) (w/w %: NMT 0.1)		Complies KF = 0.07 %	
8.	If complies, proceed to Step-9; If not, repeat Step-2 to7 using another clean RBF.				

Page **14** of **24**

				40.2 mL	
9.	Store (R)-2-(Methoxymethyl)pyrrolidine under N ₂	45.0 mL	~42.0	was syringed	
9.	atmosphere in RBF-2 over molecular sieves.		mL	out for	
				reaction	

Results:

Sl. No.	Batch ID	Batch size (g)	<i>R</i> -Amine, KF before drying (w/w %)	Output (g)	<i>R</i> -Amine, KF after drying (w/w %)	Sign
1	CR592-20218- 17- <i>R</i> -Amine	45.0	0.24	42.0	0.07	

Sl. No.	Step No. 6	Step No. 7
	KF of <i>R</i> -Amine before drying	KF of <i>R</i> -Amine after drying
1	CR592-20195-34-F-2	CR592-20218-17-R-
	_KF.pdf	base.pdf

iv. <u>Procedure-D (Drying of KSM-I) [RBF-3]</u>

Process Information:

Actual batch size and quantity:

S. No.	Reagent		Unit	Qty	Mol Wt.	mol	Mol Ratio / wt. times vol	Source
1	KSM-I		g	75.0	328.2	0.228	1.0 eq	Yibin Hongguang Pharma (Purity: 99.0 A %)
2	2-MeTHF	Lot-1 Lot-2 Lot-3	mL	225 mL 225 mL 150 mL	_	_	3.0 V 3.0 V 2.0 V	Sigma-Aldrich MC by KF (w/w %): NMT 0.06

Page **15** of **24**

Table No. 4:

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
1.	Check the cleanliness of the reaction RBF-3 (1 L 4- neck flask) fitted with an internal temperature probe, overhead stirrer, and condenser with N_2 inlet.				
2.	Charge KSM-I via solid funnel at 25-30 °C.	75.0 g	75.0 g	(Purity: 99.0 A %, HPLC)	
3.	Charge 2-MeTHF-Lot-1 via cannula into RBF-3 .	225.0 mL	225.0 mL		
4.	Stir reaction mass for 10-15 min at 25-30 °C under N ₂ atmosphere. Note: Solution becomes homogeneous and pale- yellow in color. Sampling Procedure: Take 2 mL of KSM-I solution and submit it for KF analysis.	IPC-3: (MC by KF) (w/w %): Before azeotropic distillation.		KF = 0.18 %	
5.	Raise the oil bath temperature to 90 ± 5 °C.			RM internal temperature checked	
6.	Distill 2-MeTHF out so that ~75 mL is left in RBF.		125.0 mL	150.0 mL was collected	
7.	Cool the reaction mass to 25-30 °C under N ₂ atmosphere. Sampling Procedure: Take 2 mL of KSM-I solution and submit it for KF analysis.	IPC-3: (MC by KF) (w/w %): After azeotropic distillation		KF = 0.06 %	
8.	If not complies repeat Step-2 to 7 using 2-MeTHF- Lot-2.	225.0 mL			

Page **16** of **24**

9.	Charge 2-MeTHF-Lot-3 into RBF-3 . Note: Handle the solvent under N ₂ atmosphere.	150 mL	150 mL	
10.	Store KSM-I solution under N ₂ atmosphere in RBF-3 .			

Results:

Sl. No.	Batch ID	KSM-I KF before drying (w/w %)	KSM-I KF after drying (w/w %)	Sign
1	CR592-20218-17-KSM-I	0.18	0.06	

Sl. No.	Step No. 4	Step No. 7	Step No. 2
	KF of KSM-I before drying	KF of KSM-I after drying	Purity of KSM-I (HPLC A %)
1	CR592-20218-17-KS M-1-before-KF.pdf	CR592-20218-17-KS M-1-after-KF.pdf	CR592-20218-6-KSM -I (1).pdf

v. <u>Procedure-E (Drying of KSM-II-Free amine with activated molecular sieves) [RBF-4]</u>

Actual batch size and quantity:

S. No.	Reagent	Unit	Qty	Mol Wt.	mol	Mol Ratio / wt. times vol	Source
1	KSM-II-Free amine	mL	65.0	227.3	0.285	1.25 eq	CR592-19938-59
2	Molecular sieves, 4 Å	g	15.0	-	-		Avra

Table No. 5:

Process Information:

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
1.	Check the cleanliness of the reaction RBF-4 (1 L 3-neck flask) fitted with a vacuum line and N_2 inlet.				

Page **17** of **24**

2.	Charge molecular sieves 4Å at 25-30 °C. Note: Handle the material under N_2 .	11.0 g	11.0 g		
3.	Raise the oil bath temperature to 140-150 °C.				
4.	Apply vacuum slowly and keep the temperature at 140-150 °C for 4-5 h.				
5.	Cool the RBF-4 to 25-30 °C under N_2 atmosphere.				
6.	Charge KSM-II into RBF-4 . (Material taken from Table No. 2, Step-26). Note: Transfer material through graduated measuring cylinder under N ₂ atmosphere.	65.0 g	65.0 g	KF = 1.13 %	
7.	Store KSM-II under molecular sieves for 3-4 h and submit sample for KF. Sampling Procedure : Take 2 mL of KSM-II solution and submit it for KF analysis.	IPC-4: (MC by KF) (w/w %): NMT 0.1		KF = 0.08 %	
8.	If it does not comply, repeat Step-2 to Step-7.				
9.	Store KSM-II-Free amine under N ₂ atmosphere in RBF-4 .	65.0 mL		62.30 mL was syringed out for reaction	

Results:

S. No.	Batch ID	Batch size (g)	KSM-II Free amine before drying (w/w %)	Output (g)	KSM-II Free amine KF after dry (w/w %)	Recovery	Sign
1	CR592- 19938-59	65.0	1.13	62.5	0.08	96 %	

Sl. No.	Step No. 6	Step No. 7
	KF of KSM-II before drying	KF of KSM-II after drying
1	CR592-20218-17-KS M-2-before -KF.pdf	CR592-20218-17-KS M-2-after-KF.pdf

Page **18** of **24**

vi. Procedure-F (Solution of KSM-II Free amine) [RBF-5]

Process Information:

Actual batch size and quantity:

S. No.	Reagent		Unit	Qty	Mol Wt.	mol	Mol Ratio / wt. times vol	Source
1	KSM-II-Free a	mine	mL	62.30 mL	227.3	0.274	1.2 eq	RBF-4
2	2-MeTHF	Lot-1	mL	375 mL	-	_	5.0 V	Sigma-Aldrich MC by KF (w/w %): NMT 0.06

Table No-6:

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
1.	Check the cleanliness of the reaction RBF-5 (1 L 2-neck flask). Note: RBF should be under N ₂ atmosphere.				
2.	Transfer KSM-II-Free amine to RBF-5 from RBF-4 via graduated measuring cylinder under N_2 pressure. Note: Density = 0.98 cm ⁻³ at 20 °C.	62.3 mL	62.3 mL		
3.	Charge 2-MeTHF-(Lot-1) into RBF-5 via cannula at 25-30 ° C. Note: Homogeneous solution and pale-yellow in color.	375 mL	375 mL		
4.	Store KSM-II-Free amine solution under N ₂ atmosphere in RBF-5 . Sampling Procedure: Take 2 mL of KSM-II- Free amine solution and submit it for KF analysis.	IPC-5: (MC by KF) (w/w %): NMT 0.1		KF = 0.08 %	

Analytical method for IPC-1 to IPC-5 is attached herewith:

Page **19** of **24**

List of raw materials after drying

S. No.	Reagents & Raw materials in 2-MeTHF	Parameter Specification NMT KF (w/w %)	Remarks
1.	LiBr solution (in 2-MeTHF solution)	<0.1	RBF-1
2.	<i>R</i> -Amine (neat)	<0.1	RBF-2
3.	KSM-I (in 2-MeTHF solution)	<0.1	RBF-3
4.	KSM-II-Free amine (in 2-MeTHF solution)	<0.1	RBF-5
5.	Dry 2-MeTHF	<0.05	Sure Seal™ bottle

Process Information

Actual batch size and quantity

S. No.	Reagent		Unit	Qty	Mol Wt.	mol	Mol Ratio / wt. times vol	Source	
1	KSM-I		g	75.0	328.2	0.228	1.00 eq	RBF-3	
2	KSM-II-Free am	ine	g/mL	62.3	227.3	0.273	1.20 eq	RBF-5	
3	LiBr		g	45.64	86.84	0.524	2.30 eq	RBF-1	
4	<i>R</i> -Chiral amine		mL	40.2	115.1	0.342	1.50 eq	RBF-2	
5	<i>n</i> -BuLi (2.5 M in hexane)		mL	135.0	64.06	0.296	1.30 eq	Clear Synth	
6	Aq. NH4Cl (25 % w/v)		ЪŊ	93.7	53.49	-	7.6 eq	NH ₄ Cl (93.7 g) in Water (281 mL)	
7	2-MeTHF	Lot-1	mL	450.0		_	6.0 V	Sigma-Aldrich	
/	2-Me1 HF	Lot-2	IIIL	75.0	-	-	1.0 V	Sigina-Aldrich	
8	DCM	Lot-1	mL	375.0	_		5.0 V	Standard Reagent	
0	DCIVI	Lot-2	IIIL	75.0		_	1.0 V	Standard Keagent	
9	Nitrogen		-	As required			-	In-house	

Page **20** of **24**

BEDAQUILINE ASSEMBLY REACTION

Table No. 7:

Synthesis of Bedaquiline from KSM-I & KSM-II-Free amine – [RBF-6]

S. No.	Procedure	Required Qty (units)	Actual Qty (units)	Remarks	Sign
1.	Check the cleanliness of the reaction RBF-6 (5 L 4-neck flask) fitted with an internal temperature probe, and overhead stirrer vacuum line with N_2 inlet.				
2.	Charge 2-MeTHF-Lot-1 into RBF-6 via cannula applying N_2 Pressure. Note: Continue under N_2 atmosphere.	450 mL	450 mL		
3.	Charge LiBr solution from RBF-1 into RBF-6 at 25-30 °C. Note : Transfer LiBr solution via cannula applying N ₂ atmosphere.	45.64 g dissolved in 225 mL 2-MeTHF			
4.	Charge <i>R</i> -Chiral amine (neat) from RBF-2 into RBF-6 at 25-30 °C. Note: Transfer <i>R</i> -Amine via cannula applying N ₂ atmosphere.	40.2 mL			
5.	Stir the mixture at 25-30 °C for ~10-15 min at 120-140 RPM. Note: Solution becomes homogeneous and colorless.				
6.	Cool the reaction mass to -20 °C / -22 °C. Note: Acetonitrile / dry ice bath.			Reaction mass internal temperature: -20° C	
7.	Charge <i>n</i> -BuLi into dropping funnel at 25-30 °C. Note: Transfer <i>n</i> -BuLi (2.5 M in hexane) into dropping funnel via cannula applying N ₂ atmosphere.	135.0 mL	135.0 mL		
8.	Add <i>n</i> -BuLi (2.5 M in hexane) slowly into RBF-6 at -20 ± 2 °C through dropping funnel for 25-30 min (under N ₂ atmosphere). Note: Reaction mass color becomes pale-yellow.			Rate of addition = 5.3 mL/min	
9.	Stir the reaction mixture at -20 ± 3 °C for 25-30 min at 120-140 RPM.				

Page **21** of **24**

10.	Cool the reaction mass to -42 ± 3 °C.		-40 °C	
11.	Charge KSM-I solution from RBF-3 into RBF-6 through dropping funnel at 25-30 °C. Note: Transfer KSM-I solution into dropping funnel via cannula applying N ₂ atmosphere.	75.0 g	75.0 g	75.0 g in 300.0 mL 2-MeTHF
12.	Charge 2-MeTHF-Lot-2 into dropping funnel at 25-30 °C. Note: Transfer 2-MeTHF via cannula applying N ₂ pressure.	75.0 mL		
13.	Add KSM-I slowly into RBF-6 at -42 ± 3 °C through dropping funnel for 1 h (under N ₂ atmosphere). Note: Reaction mass color becomes red wine.		−40 °C	Rate of addition = 10 mL/min
14.	Stir the reaction mixture at 120-140 RPM for 25- 30 min at -42 ± 3 °C.			
15.	Charge KSM-II solution from RBF-5 into dropping funnel at 25-30 °C. Note : Transfer KSM-II solution into dropping funnel via cannula applying N ₂ pressure.	375 mL	375 mL	
16.	Add KSM-II solution slowly into RBF-6 at -42 ± 3 °C via dropping funnel for 1 h (under N ₂ atmosphere). Note: Reaction mass color continues red wine.			Rate of addition = 10 mL/min
17.	Stir the reaction mixture at 120-140 RPM for 40- 45 min at -42 ± 3 °C.			
18.	Charge Aq. NH ₄ Cl solution (25 % w/v in water) into dropping funnel at 25-30 °C. Note : Transfer Aq. NH ₄ Cl solution into dropping funnel using cannula applying N ₂ pressure.	375 mL	375 mL	Aq. NH4Cl is prepared in a separate Container-1
19.	Add Aq. NH ₄ Cl solution into RBF-6 at -42 ± 3 °C slowly for 35-40 min through dropping funnel. Note: Reaction mass color becomes yellow/brownish.			Rate of addition = 12.5 mL/min
20.	Allow reaction mixture to warm to 25-30 °C.			
21.	Stir (120-140 RPM) the reaction mixture at 25-30 °C for 10-15 min.			

Page **22** of **24**

22.	Settle the reaction mixture for layer separation (5-10 min).			
23.	Separate the aqueous layer using Sep funnel-1 and keep the organic layer in a clean Container-2 .			Product is present in organic layer
24.	Transfer aqueous layer to RBF-6 and charge DCM-Lot-1 via graduated cylinder.	375 mL	375 mL	
25.	Stir the mixture at 25-30 °C for 5-10 min.			
26.	Settle the mixture for layer separation (10-15 min).			
27.	Separate the organic layer via Sep funnel-1 and collect organic layer in Container-2 and discard aqueous layer.			Product is present in organic layer
28.	Charge Na ₂ SO ₄ into dedicated Container-2 .	20 g		
29.	Filter the organic layer through Buchner funnel (FLT-2) followed by washing successively with DCM-Lot-2 and suck dry the solid.	75 mL	75 mL	
30.	Charge organic layer (DCM) into a well dried and clean 5 L RBF-7 at 25-30 °C.			
31.	Remove the solvent under vacuum at 45-50 °C for 1-2 h. Note: Until no distillate comes out. A pale-yellow semi-solid (Crude-Bedaquiline) residue was obtained.			Vacuum 740- 750 mmHg
32.	Submit for purity analysis (Related Substance) of crude BDQ and weight is taken.	~25 mg	50 mg	IPC: Related Substance by HPLC for Information only
33.	Take Crude-Bedaquiline as such for further purification in RBF-7 .			

IPC METHOD FOR PURITY FOR PURITY ANALYSIS OF CRUDE BDQ

Page **23** of **24**

IN-PROCESS CONTROL DATA

S.	Batch ID	Input	Output	Purity by HPLC (A %)				Sign	
No.		(g)	(g)	D-I	D-II	KSM-I	KSM-II	Imp-1	
1	CR592-20218-17	75.0	136	77.74	5.70	5.18	7.11	2.87	

Sl. No.	Step No. 32	Step No. 32	Step No. 32	Step No. 32	Step No. 32
	NMR	HPLC	Assay	LC	SFC
1	CR592-20218-17-CR _NMR.pdf	CR592-20218-17-CR -R.pdf	CR592-20218-17-CR -assay.pdf	CR592-20218-17-CR -R1_LC.pdf	CR592-20218-17-CR -SFC-CK571_Chiral P

Page **24** of **24**